Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Caffeine Res ; 4(1): 13-20, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24868491

RESUMO

Background: Disruptive effects of caffeine on sleep have previously been reported, although measures of next-day mood and performance have rarely been included. The present study aims to evaluate the effects of caffeine on sleep and associated next-day effects in a naturalistic field setting. Methods: Nineteen participants (daily caffeine intake 0-141 mg), assessed as good sleepers, took part in a randomized, placebo-controlled, double-blind, 2-week crossover study to assess the effects of bedtime caffeine use (250 mg) on sleep and next-day cognitive performance and mood, which were assessed on a mobile phone in the morning and afternoon. Sleep was assessed objectively (actiwatch) and subjectively (sleep diary). Results: Caffeine's effects on sleep were largely restricted to the first day of administration, with actigraphically measured reduced sleep efficiency, increased activity score and fragmentation index, decreased self-rated sleep quality, and an increased occurrence of participants waking early; only decreased sleep efficiency remained over the week. Effects on next-day performance and mood were evident over the whole week, although despite disrupting sleep, accuracy on a working memory task was higher after caffeine than placebo administration. Conclusions: Caffeine disrupted sleep, although when assessing next-day performance, which may have been affected by the presence of residual caffeine, performance appeared better after caffeine compared to placebo, although this was most likely due to prevention of the effects of overnight withdrawal from caffeine rather than representing a net benefit. Furthermore, partial tolerance developed to the effects of caffeine on sleep.

2.
Phytother Res ; 21(2): 99-112, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17106868

RESUMO

Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined.


Assuntos
Osso e Ossos/metabolismo , Dieta , Osteoporose/tratamento farmacológico , Plantas Medicinais , Animais , Doenças Ósseas Metabólicas/tratamento farmacológico , Reabsorção Óssea/dietoterapia , Osso e Ossos/efeitos dos fármacos , Terapias Complementares , Suplementos Nutricionais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos
3.
Br J Pharmacol ; 140(8): 1363-72, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14623762

RESUMO

The GABA-modulating and GABA-mimetic activities of the monoterpenoid thymol were explored on human GABAA and Drosophila melanogaster homomeric RDLac GABA receptors expressed in Xenopus laevis oocytes, voltage-clamped at -60 mV. The site of action of thymol was also investigated. Thymol, 1-100 microm, resulted in a dose-dependent potentiation of the EC20 GABA response in oocytes injected with either alpha1beta3gamma2s GABAA subunit cDNAs or the RDLac subunit RNA. At 100 microm thymol, current amplitudes in response to GABA were 416+/-72 and 715+/-85% of controls, respectively. On both receptors, thymol, 100 microm, elicited small currents in the absence of GABA. The EC50 for GABA at alpha1beta3gamma2s GABAA receptors was reduced by 50 microm thymol from 15+/-3 to 4+/-1 microm, and the Hill slope changed from 1.35+/-0.14 to 1.04+/-0.16; there was little effect on the maximum GABA response. Thymol (1-100 microm) potentiation of responses to EC20 GABA for alpha1beta1gamma2s, alpha6beta3gamma2s and alpha1beta3gamma2s human GABAA receptors was almost identical, arguing against actions at benzodiazepine or loreclezole sites. Neither flumazenil, 3-hydroxymethyl-beta-carboline (3-HMC), nor 5alpha-pregnane-3alpha, 20alpha-diol (5alpha-pregnanediol) affected thymol potentiation of the GABA response at alpha1beta3gamma2s receptors, providing evidence against actions at the benzodiazepine/beta-carboline or steroid sites. Thymol stimulated the agonist actions of pentobarbital and propofol on alpha1beta3gamma2s receptors, consistent with a mode of action distinct from that of either compound. These data suggest that thymol potentiates GABAA receptors through a previously unidentified binding site.


Assuntos
Moduladores GABAérgicos/farmacologia , Óleos Voláteis/química , Receptores de GABA-A/efeitos dos fármacos , Timol/farmacologia , Thymus (Planta) , Regulação Alostérica , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster , Sinergismo Farmacológico , Humanos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Subunidades Proteicas , Receptores de GABA-A/fisiologia , Timol/química , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...